A Robust Dynamic Heart-Rate Detection Algorithm Framework During Intense Physical Activities Using Photoplethysmographic Signals
نویسندگان
چکیده
Dynamic accurate heart-rate (HR) estimation using a photoplethysmogram (PPG) during intense physical activities is always challenging due to corruption by motion artifacts (MAs). It is difficult to reconstruct a clean signal and extract HR from contaminated PPG. This paper proposes a robust HR-estimation algorithm framework that uses one-channel PPG and tri-axis acceleration data to reconstruct the PPG and calculate the HR based on features of the PPG and spectral analysis. Firstly, the signal is judged by the presence of MAs. Then, the spectral peaks corresponding to acceleration data are filtered from the periodogram of the PPG when MAs exist. Different signal-processing methods are applied based on the amount of remaining PPG spectral peaks. The main MA-removal algorithm (NFEEMD) includes the repeated single-notch filter and ensemble empirical mode decomposition. Finally, HR calibration is designed to ensure the accuracy of HR tracking. The NFEEMD algorithm was performed on the 23 datasets from the 2015 IEEE Signal Processing Cup Database. The average estimation errors were 1.12 BPM (12 training datasets), 2.63 BPM (10 testing datasets) and 1.87 BPM (all 23 datasets), respectively. The Pearson correlation was 0.992. The experiment results illustrate that the proposed algorithm is not only suitable for HR estimation during continuous activities, like slow running (13 training datasets), but also for intense physical activities with acceleration, like arm exercise (10 testing datasets).
منابع مشابه
TROIKA: A General Framework for Heart Rate Monitoring Using Wrist-Type Photoplethysmographic (PPG) Signals During Intensive Physical Exercise
Heart rate monitoring using wrist-type photoplethysmographic (PPG) signals during subjects’ intensive exercise is a difficult problem, since the signals are contaminated by extremely strong motion artifacts caused by subjects’ hand movements. So far few works have studied this problem. In this work, a general framework, termed TROIKA, is proposed, which consists of signal decomposiTion for deno...
متن کاملRobust heart rate estimation using wrist-type photoplethysmographic signals during physical exercise: an approach based on adaptive filtering.
Photoplethysmographic (PPG) signals are easily corrupted by motion artifacts when the subjects perform physical exercise. This paper introduces a two-step processing scheme to estimate heart rate (HR) from wrist-type PPG signals strongly corrupted by motion artifacts. Adaptive noise cancellation, using normalized least-mean-square algorithm, is first performed to attenuate motion artifacts and ...
متن کاملAn Estimation Technique using FFT for Heart Rate Derivedfrom PPG Signal
Heart rate (HR) observation by using photoplethysmography (PPG) signals during intense physical activity is a crucial task because of the fact that PPG signals are affected by the noise due to movement artifacts by the user's hand movements. This paper addresses the discriminating assessment of a novel encapsulation for wearable PPG sensor during the severe physical activity. In this work, we p...
متن کاملSVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals
Although wrist-type photoplethysmographic (hereafter referred to as WPPG) sensor signals can measure heart rate quite conveniently, the subjects' hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG met...
متن کاملA time-frequency domain approach of heart rate estimation from photoplethysmographic (PPG) signal
ObjectiveHeart rate monitoring using wrist type Photoplethysmographic (PPG) signals is getting popularity because of construction simplicity and low cost of wearable devices. The task becomes very difficult due to the presence of various motion artifacts. The objective is to develop algorithms to reduce the effect of motion artifacts and thus obtain accurate heart rate estimation. MethodsPropos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017